Recommandé par l'IIF / Document IIF

Évaluation des défauts légers pour les pompes à chaleur électriques : modèles mécanistes et outils d'apprentissage automatique.

Soft faults evaluation for electric heat pumps: Mechanistic models versus machine learning tools.

Numéro : 0753

Auteurs : MAURO A. W., PELELLA F., VISCITO L.

Résumé

To reduce carbon footprint of heating and cooling, electrical heat pumps (EHP) will have more room of application because of the major use of electricity produced by renewables. To ensure high performances, it is important to develop fault detection, diagnosis and evaluation strategies (FDDE) for soft faults, which do not cause a stop of the EHP and could silently be detrimental (e.g. refrigerant leakages, heat exchangers fouling). In this paper, a surrogate database under faulty conditions generated by a mechanistic model is used to compare the ability in evaluating soft faults and performance degradation of three different approaches: one based on a look-up table implemented remotely and the other two based on machine learning. Among them, one is an artificial neural network (ANN) and the other is a K-Nearest Neighbors (KNN) classification method. All the approaches were developed and tested, considering as inputs 5 measured variables on the machine among pressures and temperatures, characterized by an instrument uncertainty of 0.2°C and 0.2 bar. Results show that all the investigate approaches can similarly evaluate faults, with the ANN able to better evaluate early-stage fault intensities for all the three faults investigated.

Documents disponibles

Format PDF

Pages : 12

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Soft faults evaluation for electric heat pumps: Mechanistic models versus machine learning tools.
  • Identifiant de la fiche : 30031462
  • Langues : Anglais
  • Sujet : Technologie
  • Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
  • Date d'édition : 21/08/2023
  • DOI : http://dx.doi.org/10.18462/iir.icr.2023.0753

Liens


Voir d'autres communications du même compte rendu (373)
Voir le compte rendu de la conférence