Recommended by the IIR / IIR document
Soft faults evaluation for electric heat pumps: Mechanistic models versus machine learning tools.
Number: 0753
Author(s) : MAURO A. W., PELELLA F., VISCITO L.
Summary
To reduce carbon footprint of heating and cooling, electrical heat pumps (EHP) will have more room of application because of the major use of electricity produced by renewables. To ensure high performances, it is important to develop fault detection, diagnosis and evaluation strategies (FDDE) for soft faults, which do not cause a stop of the EHP and could silently be detrimental (e.g. refrigerant leakages, heat exchangers fouling). In this paper, a surrogate database under faulty conditions generated by a mechanistic model is used to compare the ability in evaluating soft faults and performance degradation of three different approaches: one based on a look-up table implemented remotely and the other two based on machine learning. Among them, one is an artificial neural network (ANN) and the other is a K-Nearest Neighbors (KNN) classification method. All the approaches were developed and tested, considering as inputs 5 measured variables on the machine among pressures and temperatures, characterized by an instrument uncertainty of 0.2°C and 0.2 bar. Results show that all the investigate approaches can similarly evaluate faults, with the ANN able to better evaluate early-stage fault intensities for all the three faults investigated.
Available documents
Format PDF
Pages: 12
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Soft faults evaluation for electric heat pumps: Mechanistic models versus machine learning tools.
- Record ID : 30031462
- Languages: English
- Subject: Technology
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Publication date: 2023/08/21
- DOI: http://dx.doi.org/10.18462/iir.icr.2023.0753
Links
See other articles from the proceedings (373)
See the conference proceedings
Indexing
- Themes: Residential heat-pumps
- Keywords: Domestic heat pump; Failure; Detection; Machine learning; Modelling
-
Fault detection for vaccine refrigeration via c...
- Author(s) : ABHIRAMAN B., FOTIS R., ESKIN L., RUBIN H.
- Date : 2023/05
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Formats : PDF
View record
-
Deep learning-based refrigerant charge fault de...
- Author(s) : EOM Y. H., HONG S. B., YOO J. W., KIM M. S.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
A variable refrigerant flow (VRF) air-condition...
- Author(s) : CHENG H., MU W., CHENG Y., CHEN H., XING L.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
Development of a remote refrigerant leakage det...
- Author(s) : KIMURA S., MORIWAKI M., YOSHIMI M., YAMADA S., HIKAWA T., KASAHARA S.
- Date : 2022/07/10
- Languages : English
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
A comprehensive review: Fault detection, diagno...
- Author(s) : SINGH V., MATHUR J., BHATIA A.
- Date : 2022/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 144
- Formats : PDF
View record