IIR document
Fault detection for vaccine refrigeration via convolutional neural networks trained on simulated datasets.
Author(s) : ABHIRAMAN B., FOTIS R., ESKIN L., RUBIN H.
Type of article: IJR article
Summary
In low-and middle-income countries, the cold chain that supports vaccine storage and distribution is vulnerable due to insufficient infrastructure and interoperable data. To bolster these networks, we developed a convolutional neural network-based fault detection method for vaccine refrigerators using datasets synthetically generated by thermodynamic modeling. We demonstrate that these thermodynamic models can be calibrated to real cooling systems in order to identify system-specific faults under a diverse range of operating conditions. If implemented on a large scale, this portable, flexible approach has the potential to increase the fidelity and lower the cost of vaccine distribution in remote communities.
Available documents
Format PDF
Pages: 274-285
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Fault detection for vaccine refrigeration via convolutional neural networks trained on simulated datasets.
- Record ID : 30031625
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Publication date: 2023/05
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2022.12.019
Links
See other articles in this issue (24)
See the source
Indexing
-
Integration of dynamic model and classification...
- Author(s) : AGUILERA J. J., MEESENBURG W., SCHULTE A., OMMEN T., MARKUSSEN W. B., ZÜHLSDORF B., POULSEN J. L., FÖRSTERLING S., ELMEGAARD B.
- Date : 2022/06/13
- Languages : English
- Source: 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2022). Proceedings. Trondheim, Norway, June 13-15th 2022.
- Formats : PDF
View record
-
Fault detection and diagnosis in refrigeration ...
- Author(s) : SOLTANI Z., SORENSEN K. K., LETH J., BENDTSEN J. D.
- Date : 2022/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 144
- Formats : PDF
View record
-
Deep learning-based refrigerant charge fault de...
- Author(s) : EOM Y. H., HONG S. B., YOO J. W., KIM M. S.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
Parallel deep neural network for scalable coupl...
- Author(s) : CHEN S., LIU Z., CHEN K., ZHU X., JIN X., DU Z.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
Machine-learning-based compressor models: A cas...
- Author(s) : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.
- Date : 2021/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
- Formats : PDF
View record