Experimental and numerical optimization of a variable-geometry ejector in a transcritical CO2 refrigeration cycle.
Number: 2569
Author(s) : BARTA R. B., DHILLON P., ZIVIANI D., BRAUN J. E., GROLL E. A.
Summary
Implementation of an ejector for expansion work recovery in transcritical carbon dioxide (CO2) cycles provides an opportunity to improve the efficiency of these environmentally-friendly refrigeration systems. However, literature outlining an approach to ejector design for a given application is lacking. This paper presents a tool to design a complete ejector applied in a vapor compression cycle. In this work, the developed design tool was validated using experimentally-derived polynomials for air-conditioning conditions. Then, constant values for nozzle and mixing section efficiencies were used as inputs into design tool to broaden the analysis outside of the application boundaries of the experimentally-derived polynomials to study a transcritical CO2 system with an ejector operating in the evaporating temperature and gas cooler pressure in the range of -15 °C to 20 °C and 80 bar to 110 bar, respectively. The design tool allows for the calculation of the motive and suction nozzle throat diameters, the mixing section diameter, and the diffuser outlet diameter, as well as the lengths of each section, to output a full internal geometry of the ejector based on performance requirements. Individual component sub-models are presented within the proposed model structure. The model which forms the basis of the design tool was experimentally validated with a mean absolute error (MAE) between 3% to 4%. Additionally, the sensitivity of the ejector geometry and performance to component efficiencies, operating conditions, and component versus system optimization was investigated. The optimization and parametric studies provided novel insights into the impact of desired efficiency and operating conditions on ejector geometry, thus allowing a designer to make decisions based on the tradeoff between ejector size and performance. For example, as the diffuser length increased by 5.1 mm to obtain an efficiency increase, to obtain a further efficiency increase of the same amount would require a 17.1 mm length increase in diffuser length.
Available documents
Format PDF
Pages: 12
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Experimental and numerical optimization of a variable-geometry ejector in a transcritical CO2 refrigeration cycle.
- Record ID : 30028554
- Languages: English
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2021/05
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (184)
See the conference proceedings
Indexing
-
Themes:
Ejector systems, air cycle, Stirling cycle, other cycles);
CO2 - Keywords: Ejector; Modelling; CO2; R744; Transcritical cycle; Optimization; Design; Performance; Geometry
-
System designing of transcritical CO2
- Author(s) : HAIDER M., ELBEL S.
- Date : 2021/05
- Languages : English
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Transcritical single-phase CO2 ejector geometry...
- Author(s) : EXPÓSITO CARRILLO J. A., RINCON CASADO A., SÁNCHEZ DE LA FLOR F. J., et al.
- Date : 2018/06/18
- Languages : English
- Source: 13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings. Valencia, Spain, June 18-20th 2018.
- Formats : PDF
View record
-
Experimentelle und theoretische Untersuchung ei...
- Author(s) : TISCHENDORF C., RICHTER C., FIORENZANO R., et al.
- Date : 2007/11/22
- Languages : German
- Source: DKV-Tagungsbericht 2007, Hannover.
View record
-
Les éjecteurs confirment leur potentiel.
- Author(s) : WIEDENMANN E.
- Date : 2015/11
- Languages : French
- Source: La revue pratique du froid et du conditionnement d'air - n. 1040
View record
-
Thermodynamic performance evaluation of an ejec...
- Author(s) : BAI T., SHI R., YU J.
- Date : 2023/05
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Formats : PDF
View record